- 作者:jiayuan
- 时间:2019-12-07
- 版本:v4.5.0
- 大小:11.64 MB
- 更新:2019-12-07
上周末的一则新闻再次已发了人们对人工智能的关注,著名的Dota 2职业玩家Dendi在一场1V1的solo大战中惨遭OpenAI公司的人工智能碾压,短短10分钟便彻底输掉了这场比赛!从中不难看出,人工智能在各个领域中惊人潜力。那么人工智能一旦失控又该怎么解决呢?
在OpenAI位于旧金山的办公室里,研究人员Dario Amodei正在通过赛船冠军赛(Coast Runners)来训练人工智能。不过,这个人工智能好像有点失控了。
赛船冠军赛的游戏规则很简单,如果想赢,选手必须收集到最多的分数,然后跨过终点线。
但Amodei的人工智能玩着玩着有点过火了,它在不断地追求高分,非但毫无跨过终点线的意思,反倒为了要多转几个圈拿高分,它开始和其它赛船碰撞,或是在过程中自己撞墙爆炸了。
为了应对,Amodei和OpenAI的同事Paul Christiano正在研发一套不仅可以自我学习,同时也愿意接受人工监控的算法。
在赛船游戏的训练中,Amodei和同事将不时通过按键来指出人工智能的不当之处,告知人工智能,不仅要赢分数,同时也要跨过终点线。他们认为,这种包含了人工干预成分的算法可以确保系统安全性。
而在Google旗下DeepMind的研究人员也同意Amodei和同事的想法。两个团队,分别代表了OpenAI和DeepMind,最近罕有地合作发表了部分人工智能安全方面的研究论文。
除此以外,Google旗下的Google Brain,以及来自伯克利大学和斯坦福大学的研究团队,都设有该方向研究课题,从不同方面考虑人工智能安全问题。
除了这种在自我学习过程中“搞错重点”的潜在危险,另一个可预想的人工智能危险在于“为了完成任务,拒绝被开发者关机”。
一般在设计人工智能时,研发人员都会给它设定“目标”,就像赛艇游戏中的“得分”一样。一旦人工智能将获得“分数”为终极目标,它可能会产生一个方法论——想要获得更加多的分数,其中一个方法就是不关闭自己,这样就能无止境地获取分数了。
伯克利大学的研究人员Dylan Hadfield-Menell和团队最近发布了讨论这个问题的论文。他们认为,如果在设计算法的时候,让人工智能对目标保持一定不确定性,它们才有可能愿意保留自己的“关机键”。他们采用了数字方式来尝试实现这个设置,目前还处于理论阶段。
除了人工智能自我“失控”,研究人员还在考虑黑客对人工智能的干预影响。
现代计算机视觉基于深度神经网络(deep neural networks),它通过学习分析大批量数据来形成对模式的了解。也就是说,如果要让计算机学会什么是“狗”,那就让它分析大批量狗的图片,并从中寻找规律。
但Google的Ian Goodfellow则认为,这种模式可能会为黑客提供“蒙骗”人工智能的机会。Goodfellow和其它研究人员曾展示,只要修改图片中的几个特定像素,他们就能让神经网络相信图片中的大象是一辆汽车。
如果这个神经网络是应用在安保镜头的话,这样就问题大了。
即便你用了数百万张标志了‘人’的照片来训练一个物件识别系统,你还是可以轻易拿出系统和人工识别100%不同意的图片。我们需要认清这种现象。
Goodfellow 说道。虽然这些研究大多仍处于理论阶段,但这群致力于将意外扼制于摇篮的研究人员坚信,越早开始考虑这个问题越好。DeepMind人工智能安全方面的负责人Shane Legg 说道:
虽然我们还不能确定,人工智能将以多块地速度发展。但我们的责任是尝试理解并猜测,这种技术将有可能以哪种方式被误用,并尝试找出不同的应对方式。
值得一提的是,科技大亨埃隆·马斯克(Elon Musk)此前曾公开表示,“我认为,任何对公众构成危险的事情,至少政府应该有所了解,因为政府的义务之一就是确保公共福利。没有人喜欢受到监管,但对公众有危险的任何东西(包括汽车、飞机、食品以及药品等)都应该受到管制,AI也是如此。”那么小伙伴们认为该如何解决人工智能失控的问题呢?